Insert here your thesis’ task.

CzEcH TECHNICAL UNIVERSITY IN PRAGUE
FAcUuLTY OF INFORMATION TECHNOLOGY /

DEPARTMENT OF COMPUTER SYSTEMS

Master’s thesis

Control software for the COMbo Ethernet
Tester and its integration into the Netopeer

configuration system

Be. Tomds Cejka

Supervisor: RNDr. Radek Krejci

7th May 2012

Acknowledgements

I would like to thank my leaders from the Liberouter team. They all guide
me to new experiences and knowledge. I would like to thank my supervisor
RNDr. Radek Krejci for his patience and advices. Finally and most impor-
tantly, I would like to thank my family and friends for their support, inspira-
tion and understanding.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46(6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity.

In Prague on 7th May 2012 .

vii

Czech Technical University in Prague

Faculty of Information Technology

© 2012 Tomas Cejka. All rights reserved.

This thesis is a school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Tomés Cejka. Control software for the COMbo Ethernet Tester and its inte-
gration into the Netopeer configuration system: Master’s thesis. Czech Repub-
lic: Czech Technical University in Prague, Faculty of Information Technology,
2012.

Abstract

The aim of this document is a description of my work on the software part of
the COMET Ethernet tester. COMET is the device based on Programmable
hardware — COMBO card.

During the work on the project, I created a control software for the tester.
The software includes the libcomet library and software utilities that use [ib-
comet. The COMET software contains the command line tools, the CGI
application that creates simple graphical user interface and the plug-in for
Netopeer configuration system. The plug-in brings the support of the NET-
CONF configuration protocol for COMET.

Keywords COMET, Ethernet tester, NETCONF, COMBO card, control
software, Liberouter, CESNET

Abstrakt

Obsahem tohoto dokumentu je popis mé prace na fidicim programovém vy-
baveni nového Ethernetového testovaciho zarizeni COMET. COMET je za-
Fizeni postavené na programovatelném technickém vybaveni — COMBO karta.
Tato karta je osazena Cipem FPGA.

Béhem prace na projektu jsem vytvoril programové vybaveni testeru, které
zahrnuje knihovnu libcomet a programy, které ji pouzivaji. Mezi vytvorené
programy patii nastroje pouzitelné z piikazové radky pocitace, CGI aplikace
tvorici jednoduché grafické uzivatelské rozhrani a zasuvny modul do konfig-
ura¢niho systému Netopeer. Zasuvny modul ptidava do projektu COMET
podporu konfigura¢niho protokolu NETCONF.

Klicova slova COMET, Ethernetovy tester, NETCONF, COMBO karta,
ridici programové vybaveni, Liberouter, CESNET

ix

Contents

[List of Listings|
Introductionl
1 COMET — Ethernet Tester

(1.1 Project requirements|

|2 Network Device Configuration and Management)|
2.1 NETCONE e e
2.2 YANG — configuration model|

|3 Control Tools Design|

5 Testing and Verification|
[b.1 Static Analysis of Code]o
[0.2 Sender and Receiver|

/Conclusion

|Bibliography|

|A Acronyms|

xi

xvii

15
15
16
16

21
22
23
27
35
37

41
42
42
45

49
49

51

55

[B_Installation Manuall
|IB.1 Dependencies|
IB.2 Libcometl

|C Netopeer Architecture Scheme)|

ID COMET configuration model|

[EE_Contents of Enclosed CD)|

xii

57
58
o8
58
99
59

61

63

75

List of Figures

2.1 The architecture of NETCONEK 11
2.2 NETCONF messages exchange| 12
B.1 COMBOv2card 15
(3.2 Software architecture of COMET] 17
8.3 Architecture of libcometlo 18
[4.1 How pcapedit(l) works| 23
4.2 NetCOPE Software Architecturel 24
4.3 Header of frame sent from pcap2sze| 25
4.4 Libcomet usage for sending traffic/ 25
4.5 'The process of traffic sending.|. 27
4.6 Comstat process cyclel oL 32
4.7 Fragments ot COMET screenshots| 36
p.1 Valgrind test result|. o000 41
[>.2 Spirent AX /4000 control software|. 44
9.3 The result of the test of Packet delay histogram|. 46
|C.1 'The scheme of Netopeer2[. 62
[E.I Contents of Enclosed CDI 75

xiii

List of Tables

[5.1 Test of packet delay histogram| 45

XV

List of Listings

4.1 ENUM format for comstat(1) 29
[4.2 The structure cmtc _value t| 33
4.3 CNT access for comstat(1). 34
[4.4 Change of the COMET solver stack size| 34
[>.1 BASH script for static code analysis (Stanse) 42
[B.1 Liberouter repository configuration| 57
[D.1 COMET configuration data model| 63

xvii

Introduction

In current days, networks are still getting faster. Meanwhile demands for
quality of connections are growing too. The spread of mobile technologies
causes users rely on high availability of their connection — users want to be
on-line. Therefore Internet Service Providers (ISP) and network operators
need to monitor, test and diagnose their high-speed network connection, in
order to ensure quality services. In case of failure, they need to react flexible
and promptly.

CESNET z.s.p.o. (CESNET) [11] is one of the network operators. It is the
Czech National Research and Education Network operator. CESNET supplies
the network connection to many Czech universities and connects the network
with foreign countries.

CESNET carried out a research intent that founded the development
community Liberouter [14]. The aim of the research intent! was the “Pro-
grammable hardware” activity. The result is a special hardware PCI card
equipped with Field Programmable Gate Array chip (FPGA). It is called
COMBO card. COMBO cards are possible to change their functionality in
runtime and that is their advantage.

The COMBO cards bring various opportunities for hardware-accelerated
network applications development. The example of the application based on
COMBO card is the FlowMon system developed by Liberouter community?.

The latest project that builds on “Programmable hardware” is a network
tester. The tester is called COMET. It is an abbreviation of COMBO Eth-
ernet Tester. COMET is a hardware accelerated Ethernet tester for optical
networks. It is also based on the COMBO card. This text is about my design
and implementation of the control software for COMET. The brief description
of the COMET project is in Chapter

The idea of a realisation of the new Ethernet tester came from the Liber-
outer community. There is a need to test and diagnose network devices and
optical links. Such testers are usually either very expensive or mostly said
they are not flexible enough. There is no Ethernet tester that can be set up
from the working device in time of need. The currently used Ethernet testers

'Research intent MSM6383917201.
2FlowMon is a flow-based monitoring system based on the COMBO card. It is currently
available at [3].

INTRODUCTION

are physically independent devices in form of some box. That means admini-
strators have to transport the box and connect it into the infrastructure at the
place where the test will be run.

The disadvantage of these testers is the need of having them on the loca-
tion. The testers are not able to do any other work than a testing and diag-
nosing. Our tester based on the COMBO card has this feature, because of the
COMBO card. A server with the COMBO card can run any other application.
When it is needed, the COMET functionality can be loaded. This tester can
be run on every server with COMBO card (e.g. on every FlowMon probe)
and it is loaded remotely in one minute.

Network testers usually concentrate on higher ISO/OSI layers. They test
the functionality on the data link layer and the higher layers. Sometimes it is
useful to check the connectivity and the link state on the physical layer. The
new Ethernet tester is focused mainly on the first two layers by reading and
modifying low-level registers from Phyters3, which operate on the physical
layer.

In order to control testers, they all have some user interface. Usually,
the user interface cooperates with the devices of its vendor. However, it is
difficult or impossible to use the same user interface for all of the network
devices on the network. Furthermore, the control of tester is usually only
locally available. Network operators and ISPs need to control network devices
remotely and automatically.

The COMET tester can be controlled locally via software tools used in
command line interface (CLI) on server or remotely using an SSH connection.
The list of the software utilities of COMET can be found in Chapter [3] and
in more detail in Chapter dl COMET can be controlled by a graphical user
interface (GUI). The COMET GUI is done by CGI application. It is designed
for the Apache2 web server [30]. However, it can be used with other servers
that allow running CGI applications. The whole Section [4.4] is focused on the
implementation and features of the COMET GUI.

In addition to command line tools, COMET can be integrated into the
configuration system based on the NETCONF protocol. The NETCONF pro-
tocol allows users to configure and manage multiple network devices. It can
be done from a central configuration and management system via secure con-
nection. The needs of network configuration and management are discussed
in Chapter [2]

Currently, the Ethernet testers can support the 40/100 Gbps speed (for ex-
ample some products of Spirent Communications [29]). Our new tester works
at speed of 10 Gbps, however this limitation is caused by the lack of hardware
resources. The new generation of the COMBO card will bring the support
of 40/100 Gbps. It is planned to be available during this year. The COMET

3Phyter is an independent chip on the COMBO card, that takes care of physical layer
of ISO/OSI.

2

control software is fully compatible with the new generation of COMBO cards.

This text is divided into five main chapters. The first two chapters are
general and theoretical. The COMET project is introduced in Chapter
Chapter [2]is about configuration and management protocols, especially about
the NETCONF protocol. The most of my work on the project (the software
architecture and the implementation of the control software for COMET) is
placed into chapters [3] and [4] Chapter [3] describes the architecture of the
whole system COMET including the software architecture. The description
of an implementation of the COMET software tools can be found in Chapter {4
COMET was deployed on Liberouter development servers for testing purposes.
Results of testing and verification of functionality of the COMET system can
be found in Chapter

CHAPTER

COMET - Ethernet Tester

The COMET project (COMbo Ethernet Tester) is an implementation of an
Ethernet tester based on programmable hardware — COMBO card. The
COMBO card will be briefly described in Section COMET consists of
firmware and software part. This thesis is focused on software part that
I worked on.

The COMET device can be used as a transmitter and receiver of testing
data. In addition, it can read information from hardware. These information
are useful for the link diagnoses and tests.

The COMET device can transmit prepared/stored network traffic. It has
to be hardware accelerated, because of insufficient speed of PCI Express bus,
which is used for the COMBO card connection to the server. Ethernet frames
that are sent to firmware can be repeatedly transmitted to the network. Re-
peating of the frames leads to high-speed transmission into a network and to
the wanted saturation of the link. The process of transmission of data from
software to firmware is described in Section [4.2l

On the other direction, COMET receives traffic and counts basic statistics.
The reception of the traffic data is done mainly in the COMET firmware for
the similar reason as for transmission. The COMET software obtains the
basic statistics about received data. The information is used to compute some
more characteristics and present them to a user. The gathering of data and
the computation is described in Section [4.3]

I have created a COMET library during my work on this project. It concen-
trates the functionality of all control software utilities. Therefore, the source
code can be easily maintained. The general description of the library belongs
to Chapter [3] with the COMET architecture, specifically to Section [3.3.1} The
technical details about an implementation of the library are divided into sec-
tions in Chapter [4] according to the functionalities.

As it was said in Introduction, the main advantage of this device is the
possibility of operation on any current COMBO card device. In addition,
it is possible to reuse some firmware modules in other project (especially the

1. COMET — ETHERNET TESTER

Statistical module). It is expected, that the software module for reading hard-
ware information could complete or replace some utilities from the Liberouter
software tools.

Because of needs of network operators, the whole Ethernet tester should be
controlled over a NETCONF protocol. The explanation of what NETCONF
is can be found in Section 2.I] The support of the NETCONF protocol in
COMET is done by integration into an existing configuration system.

The demand for the NETCONF support brings the need to create a config-
uration data model for COMET. During the work on the project, this model
was created. It is attached in Appendix Analysis and design, connected
with the NETCONF protocol and the configuration modelling, is described in
the Section 21

1.1 Project requirements

This section should conclude our requirements that we had at the beginning
of the COMET project.

At the beginning of the project, there was a need of traffic transmission.
The device should send stored network traffic at given speed. The transmission
was controlled by precise timestamps of every frame, which determined the
time when to send the frame to network. The COMBO card can obtain current
time from a GPS module, so that it can begin transmission exactly at right
time and with given interval.

The speed of transmission from software is limited by the bandwidth of
PCI Express interface. Therefore, we were not able to saturate the link. In
order to increase the maximal speed of transmission, hardware acceleration
was required. COMET must be able to duplicate frames for given times.
Software must be able to set up the hardware for this duplication.

Firmware and hardware provides a lot of information about incoming traf-
fic and about the state of hardware. COMET must be able to read them and
to present them to users. The example of data, that are necessary to be pre-
sented, is an amount of received packets, a state of link, maximal and minimal
size of packet, maximal and minimal delay between packets and inter-frame
gaps (IFG). The set of information, that is accessible in hardware or firmware,
can differ from version to version. Therefore, COMET should have some sim-
ple way how to describe this set of information with the location where to
read it.

COMET should be able to get access to the physical and data link layers
and present their state to user. Hardware has various configuration and state
registers and counters which have influence on the physical and data link
layers. These registers are not normally (and comfortably) accessible to users.
The software of COMET should be able to read these registers and allow users
to change them. The example of the register is an internal loopback enable

6

Project requirements

switch. When this switch is enabled, all outgoing traffic is returned to the
system without leaving it. This functionality is useful during the testing of
the COMBO card (there is no need to have any cable connection to test the
card, when the loopback is enabled). This loopback was also used during the
testing of COMET itself.

COMET should be able to work independently on any other system or
device on the network. That means there has to be possibility to control it
via local console. In combination with SSH protocol, COMET will be also
controlled remotely. In addition, COMET should provide a simple graphical
user interface in form of a simple web page, that would present read values
and allow the user to change them.

The last requirement is very important. Network operators and ISPs need
to be able to manage multiple devices on the network. They have a lot of other
requirements on the configuration and management system. The NETCONF
protocol is designed to fulfil this task. COMET must support the NETCONF
protocol. It should be done by integration of COMET as a plug-in into some
existing NETCONTF system. It was chosen the Netopeer configuration system,
which is developed by CESNET. This system implements the NETCONF pro-
tocol and provides a NETCONF library. The Netopeer system is mentioned

in Section 2.1.11

CHAPTER

Network Device Configuration
and Management

Large networks are usually hard to maintain, especially if there are devices
from different manufacturers on the same network. For these heterogeneous
networks, there is a lack of unified configuration systems. It would be very
time-consuming and sometimes impossible to configure every device of the
network separately.

That is the reason why network administrators and operators need some
centralized and standardized configuration and management system. To solve
this problem, some configuration and management protocols were developed.
The most known is probably SNMP (Simple Network Management Proto-
col) [10, RFC2570]. SNMP can be used for obtaining data from devices and
originally also for setting new values of configuration registers.

The disadvantage of SNMP is the lack of complexity of configuration pos-
sibilities that current devices support. Modern network devices usually allow
users to configure a lot of things but not via SNMP. Generally, manufacturers
pay more attention to their own proprietary user interfaces to present con-
figuration to users than to standard configuration protocols such as SNMP.
SNMP seemed to be difficult too much for configuration purposes, because
of concentration on data-oriented abstraction level. Network operators desire
task-oriented abstraction level. As the result, using just SNMP is generally
insufficient in comparison to CLI of devices.

Some of the advantages and disadvantages of SNMP and other ways of
device configuration brings up the |27, RFC3535]. This RFC is not meant to
be a complete list of features or requirements that network operators expect.
However, it is the first movement to the solution of the problems with device
configuration.

To solve problematic situation with complicated way of multiple network

2. NETWORK DEVICE CONFIGURATION AND MANAGEMENT

device configuration, people around IETF (Internet Engineering Task Force)*
decided to develop a new configuration protocol called NETCONF.

2.1 NETCONF

The NETCONF protocol was prepared by IETF with cooperation with net-
work operators and commercial companies. The name NETCONF stands for
“Network configuration”. It is a configuration protocol described in RFC doc-
uments. The first document is |16, RFC4741] (proposed in December 2006),
where we can find general introduction. This document was later revisited
by [17, RFC6241] (proposed in June 2011).

The main resources of information about the NETCONF protocol are ad-
ministrated by NETCONF WG (working group). In addition to materials
available on NETCONF WG server, there is also the server [5, netconfcen-
tral.org], which concentrates materials and tools connected with NETCONF
and YANG (Section [2.2).

The motivation of NETCONF WG was to create a protocol that “op-
erators want to use” and “vendors want to implement”. Network operators
need to manage networks, not just network devices. Vendors usually want to
implement simple and efficient protocols.

For automatic configuration of multiple network devices, network opera-
tors used various scripts that interacted with CLI of devices. Devices were
configured by these scripts. The NETCONF protocol tends to substitute this
way of configuration. It supplies the way of native automatic configuration of
the whole network.

Architecture of the NETCONF protocol is shown in Figure . It can
be partitioned into four layers. The layers are: Secure Transport, Messages,
Operations and Content.

On the bottom of the architecture model, there is a Secure Transport
protocol. From the Figure [2.] it is obvious that the NETCONF protocol
has no strict dependency on a transport protocol. There are drafts about
NETCONF using SSH, TLS, BEEP/TLS or SOAP/HTTP/TLS, however the
SSH protocol is mandatory.

The second layer from the bottom is the Messages layer. A NETCONF
message can be an RPC request, reply or a notification (<rpc>, <rpc-reply>
and <notification>). These messages are well-formed XML documents.

“Definition found on www.ietf.org: “The Internet Engineering Task Force (IETF) is
an organized activity of the Internet Society (ISOC). ISOC is a non-profit organization
founded in 1992 to provide leadership in Internet-related standards, education, and policy.
It is dedicated to ensuring the open development, evolution and use of the Internet for the
benefit of people throughout the world. See: "www.internetsociety.org*.

®The figure was originally published in [17, RFC6241] as an ASCII graph. For the
purpose of this text, it was repainted using dia(1).

10

NETCONF

Layer Example

Content Configuration Notification data
(4) data
(3) Operations <edit-config>

Messages <rpc=, <notification>
(2) <rpc-reply>

Secure

(1) Transport SSH, TLS, BEEP/TLS, SOAP/HTTP/TLS

Figure 2.1: The architecture of the NETCONF protocol is divided into four
layers.

The third and the forth layers contain an operation and configuration data.
The operations defined by RFC are:

<get-config> — retrieves the configuration information,

<get> — retrieves the configuration and state information,
<edit-config> — modifies the data in configuration datastore,
<copy-config> — copies the datastore,

<delete-config> — deletes the datastore except running,
<lock> — lock entire datastore,

<unlock> — unlock datastore,

<close-session> — graceful termination of a NETCONF session,
<kill-session> — force termination of a NETCONF session.

The set of mandatory operations is supported by the COMET.

NETCONTF is a client-server protocol. The NETCONF server is running
on a target device and it is listening for incoming connections. After suc-
cessful connection of a client over SSH, the client and the server begin to
exchange NETCONF messages. Exchange of messages shows Figure The
NETCONF protocol defines own session that must be established. The es-
tablishment of new session begins with hello message. Hello message contains

11

2. NETWORK DEVICE CONFIGURATION AND MANAGEMENT

server client
<hello> <hello>
<rpc>

<rpc-reply>

<notification>

—
\
\

Figure 2.2: NETCONF messages exchange®

supported features, so called capabilities, that client and server can handle.
The following communication uses the common subset of capabilities.

The NETCONF protocol defines configuration datastores for candidate,
running and startup configuration. Administrators can prepare candidate con-
figuration and apply it when everything is ready. NETCONF also supports
concurrent work by operations lock and unlock and transaction with rollback.
The candidate datastore is the example of capabilities defined in RFC.

According to performance tests, the NETCONF protocol is suitable for
a configuration of large networks with many devices. It is more efficient than
SNMP in bandwidth consumption. Results of the tests were presented in the
article [21] about the protocol efficiencies of NETCONF versus SNMP.

2.1.1 Netopeer

Netopeer [24] is an open-source implementation of the NETCONF protocol
written in the C language. It was originally created as a bachelor’s thesis [22]
at Masaryk university in 2007. The further development is run by the CES-
NET organization. That is the reason the Netopeer system was chosen as
a NETCONF system for COMET. The second version of Netopeer — Ne-
topeer 2 is currently under development. In this text, Netopeer 2 is referred
as Netopeer.

Netopeer uses the NETCONF library called libnetconf. Libnetconf was
a part of the Netopeer project; however it is currently a separated project.
Source codes of libnetconf are available on the project web sites [23]. Lib-
netconf is intended for building NETCONF clients and servers. It provides
functions to establish a NETCONF connection between client and server via
the SSH protocol. Furthermore, it is used to send and receive NETCONF
messages and to work with stored configuration data.

12

YANG - configuration model

The complete architecture of Netopeer is published as a scheme available
on the official project websites. The copy of the scheme is attached in Ap-
pendix [C] Figure The most important part of Netopeer system is a NET-
CONF server — netopeer-server. The COMET plug-in is loaded as a “Device
config module” by this server. Netopeer system passes the request to “Device
config modules” and waits for their reply.

Besides the NETCONF server, there is a NETCONF agent (netopeer-
agent) on the server part of the system. Netopeer-agent is an SSH Subsystem,
that is executed when an SSH connection for the NETCONF Subsystem oc-
curs. Netopeer-server accepts requests from a client via netopeer-agent. The
requests are passed to plug-ins to process them. The plug-in is a dynamically
linkable file. The generated response is sent back to the client.

The COMET plug-in for Netopeer system can be found in the netcomet
directory on enclosed CD (Appendix [E]). COMET uses make(1) and Makefile
to compile the dynamically linkable plug-in for Netopeer. More information
about the COMET plug-in can be found in Section

2.2 YANG - configuration model

A configuration and management protocol must be fully decoupled from the
configuration data model. Therefore, new working group NETMOD separated
from NETCONF WG. NETMOD WG develops the YANG modeling language.
YANG is a modeling language used for a device configuration description. It
is described by series of RFC documents, where the main one is [9, RFC6020].

According to original idea, YANG is “built on existing MIB” and SMI®
experience”. SMI and MIB were created as a supplement for SNMP. It is
a virtual database of configuration and status entities. YANG was designed
to be very extensible and authors planned the usage of SMI and MIB modules
created in the past.

The YANG language is platform and device independent. The idea of
a YANG model is to create an interface definition between client and server.
It is a little bit similar to the CORBA [2] philosophy, where a special language
called IDL is used to create a skeleton and a stub of application. YANG model
should be enough for client/user to know what the incoming data from the
response mean. The model should contain a textual description of elements.

The Syntax of the YANG language is quite simple and a bit similar to the
C programming language. There are defined keywords such as container, leaf
and list. Each of the keyword has its own semantic and a set of elements that
can follow. According to RFC:

YANG module contains a sequence of statements. Each state-
ment starts with a keyword, followed by zero or one argument,

7 [4l Management Information Base]
8 |6, Structure of Management Information]

13

2. NETWORK DEVICE CONFIGURATION AND MANAGEMENT

non

followed either by a semicolon (";") or a block of substatements
enclosed within braces ("{ }"): statement = keyword [argument]
(";" / "{“ *Statement “}“)

YANG model has a tree structure so that it can be converted to an XML
document. The conversion is useful for easier processing with existing tools
and libraries. As RFC says, YANG modules can be translated into an equal
XML syntax called YANG Independent Notation (YIN). For example the
program pyang [1] can be used to convert models between YANG and YIN
formats. Pyang is written in python and it is able to generate schemas for
validation and it can be used as a data validator.

Examples of YANG models could be found either in RFC documents or on
the server netconfcentral.org [5]. During the work on COMET, a configuration
model was designed. The first draft of the COMET configuration model was
designed by Ing. Ladislav Lhotka, CSc. It was done in the YIN format.

To make the COMET model compatible with the Netopeer system, I have
made some modifications of the model. At first, it was needed to “concatenate”
or merge the model into one XML tree. From this tree, I removed some
unused leaves, such as “Reset after Read” bits, that were not useful for end
users. On the other hand, it was necessary to insert some new RPC operations
(e.g. send-traffic operation). The resulting configuration model in YANG is
in Appendix

The COMET tester model consists of at least one interface (container
in YANG terminology) called comet-tester in the model. The comet-tester
container is divided into the COMET parts:

statistics — contains information from Statistical module,
sender — module for sending a network traffic,

output-packet-checker — enables special tag insertion during transmis-
sion,

input-packet-checker — check of incoming tagged traffic,

blackhole — frame dropping for incoming traffic (to keep input queues free
and prevent discarding),

physical-coding-sublayer — contains low-level information from hardware.
The rest of the model is the list of RPC operation definitions:
reset-modules — reset modules to initial state,

reset-counter — set counters to zero,

send-traffic — start of transmission.

14

CHAPTER

Control Tools Design

The architecture of the COMET project is shown in Figure [3.2] This section
is focused on the layers of architecture. The architecture can be divided into
three parts — hardware, firmware and software. The chapter begins with the
hardware layer and goes up to the software. The COMET software is my part
of project, so it is described in detail.

3.1 Hardware

(a) COMBO-LXT (b) COMBOI-10G2

Figure 3.1: COMBOvV2 card

At the lowest layer of the architecture of COMET, there is a COMBO hard-
ware card. COMBO card consists of COMBO-LXT Express PCIx8 mother
card (Figure[3.1[(a)]) and some of the interface cards. COMBO-LXT belongs to
the second generation of COMBO cards (COMBOv2) and it is the currently
used model. COMBO-LXT card is equipped with the FPGA chip XILINX
Virtex 5.

9XC5VLX110T or some other compatible chip, the technical detail specification can be
found on Liberouter web pages .

15

3. CONTROL TOOLS DESIGN

Even though the generations of the cards differ, for the purposes
of this text, COMBO and COMBOv2 names are interchangeable.
The first generation of the card is not supported any more. There-
fore, COMBO card means COMBOvV2 in this text.

The FPGA chip is the main processing unit of the COMBOvV2 card. It
must be loaded with special firmware. The firmware determines behaviour and
functionality of the device. The firmware of the COMET project is described
in Section

The connection of the COMBO-LXT card into the optical network is done
by a COMBO interface card. As an interface card, it can be used COMBOI-
10G2 (Figure|3.1{(b)) with two XFP cages. This interface is currently used on
the Liberouter development servers. Therefore, the COMET project primary
supports this interface card.

3.2 Firmware

To start the Ethernet tester COMET, a special firmware must be loaded into
the FPGA chip. The COMET firmware was designed and implemented by
Bc. Pavel Benac¢ek during his work on a master’s thesis [8]. The result of his
work was a design file, that is located on the CD (Appendix in the /fw
directory. The firmware is loaded by executing a COMET initialization script
(see Installation Manual in Appendix [B]).

The COMET firmware is built on the NetCOPE platform [13]'°. Net-
COPE contains building blocks for rapid development on the COMBO card.
The COMET firmware adds its own functional blocks such as Histogram mod-
ule.

Histogram module is used for counting of packet amounts. Histogram
module contains bins of configured ranges. Every bin is used as a counter of
packets with the same characteristic. The examples of Histogram module are
the histogram of packet sizes and histogram of inter-frame gaps in Figure [£.7]
The advantage of Histogram module is the possibility to obtain statistical
information about the network traffic, however there is no need to transfer all
the traffic data.

Furthermore, there are other COMET firmware modules. The complete
list can be found in [8].

3.3 Software

Figure [3.2] represents the logical structure of the COMET system. The lowest
layer was described in Sections [3.1] and [3:2] This section is focused on the

ONetCOPE Software architecture is discussed in Section 4.2 because of the communica-
tion with hardware.

16

Software

PCAPEDIT | | PCAP2SZE COMSTAT COMET.CGI

Netconf plugin Console applications CGl applications

[

LIBCOMET
i i iPhyteri

SZE CSBUS || MDIO 12C

Kernel drivers

COMBOV2 card

|

Figure 3.2: Software architecture of COMET — The software architecture
is based on kernel drivers and Liberouter libraries. The COMET functional-
ity is implemented in the libcomet library. Libcomet is used in all COMET
applications.

software layer that begins with kernel drivers.

Above the firmware, there are Kernel modules (drivers) for COMBO card.
Kernel module detects the COMBO card as a PCI Express device. The
COMBO card has its own identification number, known to Kernel driver.
The identification number determines the firmware design that is loaded into
the FPGA chip. In order to make COMET design supported in COMBO
drivers, I had to modify the Kernel module.

Kernel modules make the hardware card accessible to software. The com-
munication with Kernel modules is done via libsze2 and libcombo Liberouter li-
braries. These libraries carry out SZE, CSBUS, MDIO (Management Data In-
put/Output) and I2C communication interfaces, shown in Figure The ex-
planation of the used communication interfaces can be found in Section

17

3. CONTROL TOOLS DESIGN

LIBCOMET

STAT |~/ SEND)| |rcaptrar

XML
CONFIG

Figure 3.3: Architecture of libcomet

COMSTAT PCAP2SZE PCAPEDIT

3.3.1 Libcomet

The COMET software, that I implemented, can be found on the first half from
top of Figure In the lower row of the half, there is the libcomet library.
Libcomet contains the main functionality of the COMET tester.

Libcomet consists of three basic modules. The structure of libcomet is
shown in Figure This section will go through the libcomet modules.

The first module (PCAPTRAF) can be used for a frame manipulation
in a PCAP file. Currently, this module supports the basic set of operations.
These operations are listed and described in Section

The second module (SEND) can send a content of given PCAP file ac-
cording to timestamps. This module fulfils the requirements on the full speed
transmission and the transmission in given intervals. It is used to reply net-
work traffic dump in PCAP format. That means that content of the input file
is resent from the COMBO card to the network. This module is described in
Section

The third module (STAT) communicates with hardware and obtains in-
formation about hardware state and an incoming traffic. It can be used to
change configuration registers, disable the transmitting and receiving chips,
enable internal loopbacks and so on. The list of accessible registers and values
can be found in the special configuration file on enclosed CD (Appendix [E]) in
the

/comet/sw/comstat

directory. The module, its functionality and the configuration file are de-
scribed in Section [4.3]

18

Software

3.3.2 Software Tools

There are three kinds of the software tools — command line tools (console
applications), CGI application and Netopeer plug-in. All of these tools use
the libcomet library. Console applications correspond to [libcomet modules
that were mentioned in Section Description of the console applications
can be found in Chapter [l That chapter contains an explanation of how the
libcomet modules work.

The names of the library modules represent the header files of the libcomet
library. That means libcomet has stat.h, send.h and pcaptraf.h header files.
The main library header file, that contains an inclusion of all three files, is
called comet.h. After an installation of the library, all header files are located
in the libcomet subdirectory.

Figure [3.3] shows an input file of the library. It is the “XML config” box
in the figure. This file is called addresses.xml. The meaning and the structure
of the “XML config” file is explained in Section [1.3.2]

There is a connection between STAT and SEND modules. The connection
is shown in Figure [3.3] as an arrow. It means that STAT provides some func-
tionality for the SEND module. The SEND module searches for the address
of a register with the current time.

The second kind of the software tools, which was mentioned in the be-
ginning of this section, is a CGI application. CGI application of COMET is
called comet.cgi. It is a simple graphical user interface of COMET. It is based
on the STAT module that obtains information from hardware. The graphical
user interface has the similar functionality as one of the command line tools
(comstat(1)). However, the usage is more comfortable. Section is focused
on the graphical user interface of COMET.

COMET supports the NETCONF protocol (explained in Section . It
is done by an implementation of a plug-in for the Netopeer system. The
Netopeer plug-in of COMET is located in the netcomet directory. Therefore,
the plug-in is also called netcomet. It uses the STAT and SEND modules of
the libcomet library. Section is focused on netcomet.

19

CHAPTER

Implementation

This chapter is divided into sections according to the libcomet modules. Every
section has the same name as the corresponding console application that uses
the library module.

This chapter is focused on technical details about software utilities in-
cluded in the COMET project. The COMET project was developed in CES-
NET environment, using CESNET’s network and servers. The source codes of
the most of software utilities are written in C programming language. Project
also includes some python scripts (such as plug-in for pyang) and during the
development, I created some bash scripts (e.g. initialization scripts).

The source codes of the COMET software including all scripts, COMET
utilities and COMET library, are placed on the enclosed CD. The source codes
can be found in the

/comet/sw/

directory. Everything can be freely shared under the BSD licence.

COMET was developed and continuously tested on the Liberouter develop-
ment servers with COMBOv2 cards. These servers were located mainly in
Brno (the Czech Republic). The most of my work was done remotely via SSH
connection.

Compilation of the whole project is done using the GNU build system
known as Autotools. It is a suite of tools for build automation (GNU Auto-
conf [18], GNU Automake [19], GNU Make [20]). The Autotools system allows
recompiling of the project just by typing:

./configure && make

in the root directory of the project!!.

Y Libcomet and netcomet are compiled separately from the software utilities.

21

4. IMPLEMENTATION

A documentation of the project is mainly generated from the commented
source codes by the Doxygen documentation system [15]. Doxygen can be
configured to generate documentation in various formats. For libcomet, there
is HTML, KTEX and man documentation. For software tools, it is set to
generate only HTML version of manual. Man pages for tools are written
separately from Doxygen. The documentation can be found on enclosed CD.

As it was mentioned in Chapter [I], there are two main parts of COMET —
one for transmission and one for receiving. Receiving of the network traffic is
done only on hardware layer. COMET has a special module in the firmware
that gathers statistics about an incoming traffic. The statistics are read,
counted and displayed by comstat(1) (Section [4.3).

The transmission is done via application called pcap2sze(1). This tool
loads the list of frames from a PCAP file and sends data into the COMBO
card. Section is focused on pcap2sze(1).

4.1 PCAPEDIT

Pcapedit(1) is a software utility for manipulation with PCAP files. I developed
this utility to change the content of a PCAP file. The program reads a given
file and iterates over stored frames.

The PCAP file format is used for network traffic storage. To implement
the reading of PCAP file, I needed to know its structure. PCAP files contain
headers of two types. The first header is global for the whole file. The first
header contains the size of the longest stored frame. According to this value,
enough memory for reading buffer can be allocated. The second type of header
is added to every frame. It contains information about timestamp, the frame
length and the length of stored part of the frame. The timestamp of a frame
is used in pcap2sze(1).

A function for PCAP file reading was needed in pcap2sze(1) to obtain
data for sending. Therefore, it was placed into the COMET library [ib-
comet as a function called cmte_load_file(). It is used in both pcapedit(1)
and pcap2sze(1). Libcomet creates a list of frames using circular queue from
queue(3).

The pcapedit(1) program loads PCAP file and then perform operations on
the set of stored frames. The available operation set includes:

load file — load contents of file,
show frames — print a list of frames,

clone frame — make a copy of frame,

remove frame — remove a frame,
remove frame interval — remove a list of frames given by the range of
indexes,

22

PCAP2SZE

Start
@—| cmte_init() | cmte_load_file(...) 0 Yes cmte_clone_frame(...)
No | g |
No | &
Delete int.?
NoJs€

Random?

cmte_delete_frame(...)

cmte_delete_frame_interval(...)

Yes cmte_randomize_frames(...)

N |

cmte_get_frames()

Oy A
Yes
N a
End No/.v‘\
o & C Yes >

cmte_free() |<€ 7 Save?

cmte_save_file(...)

Figure 4.1: How pcapedit(1) works

save file — save content of internal frame list into the file,

randomize frames — this function was developed for anonymisation of ad-
dresses in PCAP files and it was used to process data in the bachelor’s
thesis of Michal Michalik [26].

The executed pcapedit(1) utility behaves according to Figure The
figure contains the names of library functions. The names of the functions are
obvious and correspond to the pcapedit(1) operations listed in this section.

From the figure it is clear that pcapedit(1) has the fixed order of execution
of operations. However, it was sufficient for our manipulation with PCAP
files. Having the main functionality implemented in libcomet, the behaviour
of pcapedit(1) (e.g. the order of operations) can be easily changed by source
code modification and recompilation. The parameters of pcapedit(1) can be
found in manual page.

4.2 PCAP2SZE

The program for sending traffic to a network is called pcap2sze(1). The name
is derived from the names PCAP and SZE. Section [4.I] explained the meaning
of PCAP. A PCAP file is an input for pcap2sze(1).

23

4. IMPLEMENTATION

SZE is a communication interface of COMBO drivers, which were devel-
oped in Liberouter team’s laboratory. In Figure[4.2]it is the lowest layer. The
COMBO drivers can be divided into two logical parts. COMET uses both
communication interfaces via Liberouter libraries libsze2 and libcombo.

In the introduction of Section [3.3] there is a mention about the COMBO
drivers modification. The COMET firmware has its own identification num-
ber. Szedata2 checks the identification number in order to decide whether the
hardware supports the SZE channel. In order to get drivers know the COMET
firmware identification, the COMET identification number had to be added
to the COMBO drivers'?.

The “combo” part of drivers supplies the interface for small volumes of
data transfer; “szedata2” provides an SZE interface. The SZE interface is
used for a fast transfer of large data. Using ring buffers in SZE, data can be
passed on between the card memory and the host memory.

ibufckl legend
tcpdump f:"*'s':}u;t ohufct] g
tepreplay B phyterctl w Platform
tsuct user interface
Third-party
Jiit _
§|"
libsze2 libcommlbr | libcombo o
7
Platform
drivers

szedata?

SI3ALP

combe

Figure 4.2: NetCOPE Software Architecture — This figure was taken from the
NetCOPE Platform Handbook, written by Liberouter team.

The loading of PCAP file was described in Section[1.1] Pcap2sze(1) sends
all frames from the circular queue into the COMBO card via the SZE interface.
For communication via SZE interface there is a library called libsze2. libsze2
implements a function used for sending data. Pcap2sze(1) uses this function
to send data (the content of PCAP file without headers) with special a header

(it is shown in Figure [4.3)).

2The identification number for COMET firmware was chosen as 0xc0330100 for its sim-
ilarity to “COMEOQ100” after the rotation of numbers. “0100” means the first version of
COMET.

24

PCAP2SZE

The header is processed by firmware and it is used for an assignment of
the timestamp and other settings for the frame. The structure of the header
is declared in pcapfile.h in libcomet. The whole header has 13B and it is
declared with attribute _ packed |, which tells to the compiler not to align
the structure size.

Nowadays, only one least significant bit is used from the “flags” byte. This
bit selects a mode of the timestamp interpretation. There are two possible
modes — relative (when value is ’1”) and absolute. The last entry of the header
is “repeat”. It means the number of repetition of current frame.

seconds nanoseconds flags repeat
(4B) (4B) (1B) (4B)

Figure 4.3: Header of frame sent from pcap2sze

Frames are queued by the COMET firmware with its headers. They are
resent to a network one by one exactly when the time is greater or equal to
timestamp from the header. For relative mode, firmware can wait for the
interval that is set by timestamp, before the next frame is sent. In the relative
mode, the COMET firmware expects the time in bytes instead of seconds and
nanoseconds. The conversion is done automatically by software. In order to
get exact time, there is a GPS module connected into the system.

?Start TEnd

cmts_init(...) | cmts_set output_iface(...) | cmts_send(...) —»| cmts_free()

Figure 4.4: Libcomet usage for sending traffic

The usage of the libcomet module for sending is shown in Figure At
first, libcomet needs to be initialized by the e¢mts_init() function. After that,
user can specify the output network interface with cmts set output_iface().
The function ¢mts__send() is the most important — it sends the content of given
PCAP file according to given parameters. Information about the amount of
sent frames is available in the variable:

uint64_t cmts_packet_sent

The function cmts_free() is a destructor of the libcomet module and it is used
to free resources of the module.

The function cmts_send() is described in more detail in Figure The
most of the source code of cmts_send() is concentrated in a loop. The loop
iterates over the list of frames in circular queue (after loading the content of

PCAP file).

25

4. IMPLEMENTATION

In every iteration, the function determines the timestamp of the current
frame. There are three modes of sending;:

e User interval — the interval between two following frames is fixed,

e User speed — user specified the speed of transmission (in bytes per
second),

e Time from PCAP — the intervals are taken from the loaded PCAP
file.

After computing a timestamp of the current frame, there is an “Apply
move” operation. It adds a constant time in case of delayed start of transmis-
sion. The time of delayed start can be given as a parameter of the function.
When there is no delayed start time specified, the timestamp is not changed.

“Normalize time” operation converts the resulting timestamps to the valid
time. That means if the amount of nanoseconds is greater than the constant
NSECS_IN_SEC (amount of nanoseconds in one second), nanoseconds are di-
vided and seconds incremented.

seconds = nanoseconds / NSECS_IN_SEC
nanoseconds = nanoseconds % NSECS_IN_SEC

At the end of every iteration, there is a test whether to send the frame
to a network. If the “do not send” flag is set, the frame is not sent. The
computed timestamp can be displayed in verbose mode even if the frame is
not sent.

The pcap2sze(1) program has a set of parameters. All parameters can be
found in manual page. Users can modify the first timestamp (-t) or they can
use the timestamp from the PCAP file. The beginning of the transmission can
be delayed by “Applying move” (--move). The intervals between frames can
be set manually (-i) or they are computed according to given transmission
speed or they are taken from the intervals between frames in the PCAP file.

The interesting parameter of pcap2sze(1) is -g. It causes the program
obtains the current time from the COMBO card and uses it as a timestamp of
the first frame. Reading the time is done by the module of libcomet described
in Section [4.3l

It is clear from previous paragraphs that the COMET software, espe-
cially the pcap2sze(1) program, needs to use functions for timestamp compu-
tation. Some of these functions originally were intended to be implemented in
peap2sze(1). They were moved to Liberouter’s libcommibr library'3, so that
they can be used in other projects. These functions can be found as “Number
manipulating functions” and “Time functions” except the cl_timeval _diff()
function that was already written.

1B libcommlbr is the Liberouter Common library, it contains functions that are used in
various Liberouter projects.

26

COMSTAT

Determine the timestamp Delayed start Send frame
Start
i >» User interval
Get input - Normalize
User speed »| Apply move .
parameters 7 P pply > time

J’
»| Time from PCAP

No

Everything was sent

Figure 4.5: The process of traffic sending.

4.3 COMSTAT

The comstat(1) program was intended for reading information only for the
COMET project. Because it is quite universally designed, its possibilities are
highly extensible and flexible. The whole program uses one configuration file:

This file contains the list of “items”, that comstat(1) can work with. It
means comstat(1) can read a value of the “item” from hardware. The value of
some “items” can be changed (for Read-Write “item”). The structure of the
configuration file will be described in Section

As a result, comstat(1) can be used for obtaining information, not neces-
sary from COMET. In addition, in case of changes in the firmware or hardware
we do not need to recompile comtat(1). A modification of the “item” set is
done just by simple editing configuration file.

The COMET firmware contains a lot of counters. The way how they are
read is discussed in Section[4.3.1] The most of the counters are mainly 64-bits
long in order to prevent overflow. They are concentrated in the Statistical
module.

The Statistical module is the most important for COMET, because it
contains information about incoming traffic. To show the characteristic of
the flow, the Statistical module contains some histogram units. Currently,
we have histograms of packet sizes, packet delays and inter-frame gaps. The
histogram unit is described in more details in the master’s thesis [§].

4.3.1 Communication with hardware

Reading of all incoming raw data from hardware to software is not possible
at full speed (the bandwidth of PCI Express is seriously limited). That is
the reason why the hardware does the most of the computation and software
mainly reads the values from counters.

27

4. IMPLEMENTATION

According to the division in Figure the COMBO card has two main
driver modules. The SZE (szedata?2) module was mentioned in Section as
one of the possible way of communication with hardware. Comstat(1) uses
rather the combo module interface than SZE. In the COMBO card firmware,
combo communication interface is based on the MI32 protocol. This proto-
col defines the ways of communication between modules. MI32 endpoint is
a firmware module that is accessible (addressed) from the software. To make
the registers and the counters accessible, the author of the COMET firmware
created MI32 endpoints.

A communication with an MI32 endpoint can be tested by the csbus(1)
tool. It is one of the Liberouter software tools. That is why this interface will
be called CSBUS in this text.

The process of register reading via CSBUS is performed in two steps.
The first step is to map a memory that will be available from the userspace.
Then, it is possible for drivers to copy the content of the target memory. The
used functions are ¢s__space_map() and cs__space__read__4() from the libcombo
library.

The histogram values of the COMET histograms are read specifically. The
histogram module is always controlled by one configuration register. Values
of all bins from one histogram are read from one value register repeatedly.
The COMET histogram has something like an inner pointer that selects the
current bin to read the value from. This pointer can be reset by setting one
configuration bit of the configuration register. After one reading from the
value register, the pointer is incremented automatically, so it points to the
next value bin.

The current version of comstat(1) supports two communication interfaces
(buses) for reading data from hardware. These interfaces are implemented in
the libcombo library. Statistical and Packet Checker modules are developed
to communicate via CSBUS, most of the phyter registers are available with
MDIO interface. It is planned to add the I?C' interface too, because it is used
for a lot of low-level registers from phyters.

MDIO is a serial bus. It is used for the Media Independent Interface (MII)
that connects Media Access Control (MAC) devices with Ethernet physical
layer (PHY). MDIO is connected for example to Physical Coding Sublayer
(PCS) and Physical Medium Attachment sublayer (PMA). This way PCS
and PMA registers can be read with comstat(1).

4.3.2 Configuration file

During the project development, I created two versions of configuration files
for comstat(1). The latest version of the configuration file is called:

addresses.xml

28

© 00 O UL i W N -

DO N = = = = b e s e
= O © 00 0O Uik W N - O

COMSTAT

This file is a well-formed XML document. The structure of the XML tree is
historically built from the previous version. The previous version was a plain
text file with data organized in rows. The new version that uses the XML
technology is more flexible. Therefore, the plain text file is no more supported.

This section is focused on details about the addresses.xml file struc-
ture and configuration possibilities. Listing [4.1] will be used for description
of meaning of elements of configuration structure.

<?xml version="1.0" encoding="utf-8"7>
<device>
<modules>
<module bus="CSBUS" header="Control modules">
<addresses><address ba="0xC00000"/></addresses>
<items>
<item>
<name>CM_ DEVNUI< /name>
<offset>0000</offset>
<bitmask>0x1</bitmask>
<size>W</size>
<access>RW</access>
<format>ENUM</format>
<display>Disable frame discarting</display>
<param value="1">Not working</param>
<param value="0">Discarting</param>
</item>
</items>
</module>
</modules>
</device>

Listing 4.1: Addresses.xml fragment — ENUM format with parameters

The basic element of the configuration is an “item” element. One “item”
is equal to one state or configuration entity. That means one register or even
one bit according to the bitmask.

A “module” element represents one hardware module or just “item” ele-
ments whose location is the same. Generally, it is a list of “item” elements.
The “module” element specifies a communication bus — currently supported
are CSBUS and MDIO. All “item” elements specified in the “module” have
to be located on the same bus.

Comstat(1) organizes the “item” elements into groups. Every “module”
element with one “base address” creates one group. There is an attribute
“header” of the “module” element. This attribute determines the text that is
printed by comstat(1) as a header of the group.

29

4. IMPLEMENTATION

Base address of the “module” is specified as an attribute of the “address”
element. It is usually the address of the first “item” from the module. The
“address” element can be used to clone the group of items. For example we
have the COMBO card with two network interfaces. Every network interface
has its own Statistical module in the firmware. These Statistical modules have
the same structure, however they are located on different base addresses. In
the configuration file, there is the structure of the Statistical module defined
only once. The module for the second network interface is added by inserting
new “address” element.

Every “item” element is supposed to have an offset address. It is the text
child element of the “offset” element. The address of the hardware register
consists of the base address and the offset address.

For items that consist of a subset of register bits, there is a “bitmask”
element. It allows user to specify which bits of a register value are valid for
the item. If “bitmask” is set to zero, all bits are valid.

The “item” element has the following possible child elements:

e access — The list of possible access values:

RO (Read Only) — generally the state item,
RW (Read-Write) — configuration item,

DN (Do Nothing) — specifies items that are not read from
hardware,

CNT (Count) — compute the value from equation, see Sec-

tion [4.3.4]

e bitmask — Bitmask is ANDed to the value that is read from register,
the result is shifted right according to the bitmask, so that the first ’1’ bit
of the bitmask is on the LSB. If the bitmask is equal to zero, all bits of
value from register are valid for the item and there is no shifting!?.

e display — The text printed by comstat(1) as a label for the item.

e name — The name of the item used for addressing; comstat(1) works
with the list of items according to item’s name.

e format — The value of format determines how the value of the item
is printed by comstat(1). The list of possible format values:

HEX — hexadecimal output,
DEC — decimal output,
BIN — binary output,

MExample: Let bitmask = 0x0C; value read from register = 0xE5: After AND operation,
the value is 0x04. The result value after shifting is 0x01.

30

COMSTAT

ENUM — the special type of enumeration, text equivalents
of values is taken from “param” attributes,

HIST — histogram,

SWITCH — the output is “ON” for a non-zero value, oth-
erwise “OFF”,

INDICATE — the output is “UP” for a non-zero value, oth-
erwise “DOWN”,

DELAY — the output value is formatted as a time in seconds
and nanoseconds,

HEADER — the output is text without any value, it is used
as a title for the list of items.

VSWITCH, VINDICATE — SWITCH and INDICATE
have their inverted form VSWITCH and VINDICATE.
The output text of VSWITCH is “OFF” for a non-zero
value (similarly VINDICATE).

e offset — The offset part of the register address; the final address is
equal to ba + of fset, where “ba” is the module’s base address.

e param — The meaning of the param differs according to the selected
access value. When access is CNT, param value specifies the equation.
Otherwise, it contains the text equivalent of numeric value. For replacing
numeric values by text equivalents from param elements, it is necessary
to select the ENUM format. The list of optional param attributes:

value — it is the number that will be replaced with given
text,

showtext — The value specifies whether to print text equiv-
alent (if it is set to '17),

uimg — it is URL of image!® that is inserted into the web
page of comet.cgi (see Section .

e repeat — This attributes is used mostly for histograms — it specifies
the amount of bins of the histogram.

e size — The Value of size element specifies the length of the item value.
The list of possible size values:

W (Word) — value is stored in one register (32b value for
CSBUS),

D (Double word) — value is stored in two following registers
(used for 64 b counters on CSBUS),

5 Example: uimg=*“/images/capable.gif”

31

4. IMPLEMENTATION

S (Swapped double word) — the same as D, but the order of
registers is reversed (higher bits are in the register with
lower address).

It is clear from Listing that the “item” elements are the child of the
“items” element. The “module” element was already described. It is wrapped
by the element “modules”. The root element of the whole configuration tree
is called “device”. The “device” element represents the COMET device. It is
allowed to appear only once in the XML configuration document.

The “device” element currently contains only one element — “modules”,
however the idea was to create some identification of the XML configuration
file in the “device” subtree. This feature was not implemented yet, because it
is not necessary. The “device” element must have exactly one child element
“modules”.

Items from the configuration file are addressed in comstat(1) by their name.
In order to address items correctly, it is recommended to use name of item
that matches the regular expression . The item name should not begin
with a digit and should contain only ASCII letters, digits and characters ’-’

and '

~[-_a-Z] [-_a-Z0-9]*$ (4.1)

The complete example of the addresses.xml file is available on the en-
closed CD. The path to the file is:

/comet/sw/comstat/addresses.xml

4.3.3 Process cycle

Start cmtc_read_values() ‘e

cmtc_init(...)

cmtc_read_values_by_module(...) |—-)| cmtc_solver() |—)| cmtc_get_datalist() cmtc_free()

cmtc_read_values_by_name(...) I—

Figure 4.6: Comstat process cycle

The process cycle will be described with the help of Figure[4.6] This figure
shows the usage of the libcomet module in comstat(1). The initialization is
done by emtc_init() that requires one parameter — the path to the config-
uration file. The emitc_init() function generates an inner representation of
the item list. According to the item list, the library reads the values from
hardware and creates a list of values (value list).

32

© 00 ~J O U = W N =

COMSTAT

There are three types of item filter for reading. It is possible to read values
of all “items” by cmtc_read_values(). The remaining two choices select the
“items”, which are read. The names of the functions have the same prefix
and the end of the name specifies a used filter. To read values of the “items”
from one “module”, the name of the function ends with _ by module. The
third possibility reads values of items with the name matching the regular
expression. The function name has the suffix _ by name.

After reading values, it is useful to execute the COMET solver by the
emtc__solver() function. COMET solver goes through the value list and looks
for the items with the CNT access (that means they were not solved yet).
When an item is solved (computed), the COMET solver changes the access
value to DN. Until the list of items is completely solved, the library computes
CNT items one by one. The computation is mentioned in Section

The resulting value list can be retrieved from [libcomet by calling the
cmtc__get_datalist() function

cmtc_value_list_t * cmtc_get_datalist ();

that returns a one way linked list of cmtc_value_t structures. The declaration
of cmtc_value_t is in Listing [4.2]

typedef struct cmtc_value {
char *name;
int error;
uint64_t value;
char *name_ display;
cmtc__param_t sparam;
cmtc_reg access_t access;
cmtc_val format_ t format;
} cmtce_value_t;

Listing 4.2: The structure cmtc_ value_t

The most of entries of the c¢mitc_walue t structure are copied from the
internal item list. On the other hand, value list does not contain information
about physical addressing (base address, offset, etc.). Comparing to the item
list, the value list contains the information about an error or success of the
computation.

Comstat(1) can be used to print the list of sections. Libcomet contains the
function cmtc__get _namelist(). This function returns the linked list of module
names from the item list. The list element contains only two entries — name
and nezt. The list must be freed manually.

The allocated memory of the value list is supposed to be manually freed
with the library function cmtc_free_datalist(). When the work with the lib-
comet library module is already finished, there is the function that frees the
inner item list — emitc_free().

33

© 00 O T i W N

[
@)

[\

4. IMPLEMENTATION

4.3.4 Computation in comstat

When the access value of an item is equal to CNT, value is not read from
hardware. It is computed for the item according to an equation given in the
param element.

Comstat(1) expects the equation in a postfix format. One CNT item is
shown in Listing The value of the item from the listing is the average size
of packets. It is computed according to Equation .

ST _SUM_SIZE
AVERAGE_SIZE = ST _PKT REC+ST_PKT CRC (42)

<item>

<format>DEC</format>

<access>CNI</access>

<size>D</size>

<bitmask>0x0</bitmask>

<offset>0000</offset>

<name>avg—pkt—size</name>

<display>Average packet size</display>

<param>ST_SUM_SIZE,ST PKT REC,ST PKT CRC,+,/</param>
</item>

Listing 4.3: Addresses.xml fragment — CN'T access with equation in parameter

The equation consists of comma (’,’) separated names of items, user numeric

constants and operators. The currently supported operators are '+, -°, ",
’/?,’<’ and >". The last two operators ("<’ and ’>’) are the logical bitwise
shift to left and right.

The COMET solver is a stack automaton. The maximal size of the stack
is defined by the SOLVER__STACK__SIZE macro. This value is set to 5
by default. The stack size can be changed by reconfiguring and recompiling

of the libcomet library. The configuration parameter is called:

--with-solver-stack=NUMBER

Listing [4.4] shows the way how to change the stack size.

make clean
./ configure —with—solver —stack=10
make

Listing 4.4: Change of the COMET solver stack size

34

User interface

4.3.5 Compilation Output — COMSTAT and COMET.CGI

This section is about the compilation of comstat(1) and comet.cgi and has
no connection with the libcomet library. The compilation of source codes
in the /comet/sw/comstat/ directory on enclosed CD is done by make(1)
according to Makefile. This is the same behaviour as of the other COMET
software utilities. However, the Makefile in comstat directory contains rules
to generate two binaries — comstat(1) and comet.cgi.

The first output of compilation is comstat(1). It is a console application for
usage from the command line. Comstat(1) takes the input from given argu-
ments. The list of parameters can be found in the manual page of comstat(1).

The second output is comet.cgi that is a CGI application, The comet.cgi
application creates the graphical user interface of COMET. It is described in
Section [4.4]

The both binaries are generated from the same source codes. The main
source code file (comstat.c) contains two branches — one for comstat(1) and
one for comet.cgi. The compilation is controlled by internal precompiler
macros: HTMLOUTPUT and CGISCRIPT. These two macros are passed
to compiler in order to determine which branch to use. if the HTMLOUT-
PUT macro is defined, the output of binary is in HTML formal.

For generating HTML output, I have created my own html module. The
html module consists of html.c and html.h. Even though html was not re-
leased as a library, it can be easily reused. All functions from html module
have “html_ " prefix. The html module creates an internal tree that is ren-
dered.

Despite the output format, comet.cgi differs from comstat(1) in the way of
parameter passing. Defining CGISCRIPT macro, the CGI mode is enabled.
The CGI application was developed and tested with the Apache 2 web server.
This server stores the HI'TP GET parameters into the QUERY_ STRING
environment variable. It was used to take parameters in comet.cgi.

4.4 User interface

COMET can be used from console via the pcap2sze(1), pcapedit(1) and com-
stat(1) utilities. In addition, it has a simple web user interface for the comstat
module. The Web pages are dynamically generated by comet.cgi. Comet.cgi
is executed by the web server to generate a response to an HT'TP request of
a client.

Figures [{. 7.7 shows cropped screenshots of the comet.cgi HTML pages.
The screenshots were captured on the Liberouter testing server during the test
of firmware.

Figure 4.74.8(a)| contains the data from Statistical module. It shows the
basic statistical information about the testing traffic that was received. There
is one computed item — “Average packet size”.

35

4.

IMPLEMENTATION

Statistics module
Total packet count (received + discarded) 5018

Received frames (not discarded)

Discarded frames
Buffer owerflow
CRC error
Bad MAC address

Packets over MTU counter
Packets below MTU counter

MIN packet size
MAX packet size
MIN packet delay (B)

MAX packet delay (B)
Number of packets in sum of sizes

Sum of sizes

Read to read delay (clocks)

Average packet size

5018
0

o]
0
o]
0
0

64

o8

10
141467531342
5019

453866
860165869

elv]

Histogram of sizes

0-63
64 - 127

0
Bl-01e

832 - BYS
896 - 959
960 - 1023
1024 - others
Enable size histogram
RAR size histogram

Histogram of IFG

<0-8)B
<8-12)B
<12 - 15)B
<15 -19)B
=19 - 24)B
<24 - 30)B
<30 - 37)B
=37 - 45)B
=45 - 54)B
<54 - 64)B
<64 -75)B
=75 - 87)B
<87 - 100)B
<100 - 125)B
<125 -157)B
<157 - others)B
Enable IFG histogram
RAR IFG histogram

0
lcs0
| %%
450

oooooooooo!
=

[R

(on)

® (off)

(a) Statistical module

(b) IFG histogram

List of sections

PCS Reset ® (off)

PCS system loopback G (on)

PCS Low power ® (off)

PCS Fault(s) (up)

PCS RX link status (up)
PCS Low power ability « Supported

PCS TX fault(s) (up)

PCS RX fault(s) (up)

10GBASE-R RX Link status (up)

PCS PRBS31 pattern test capability ¢ Capable

Figure 4.7: Fragments of COMET screenshots

The sample of histogram is shown in Figure|4.714.8(b)l We can see amounts
of Ethernet frames that were received. The frames are divided into bins of
histogram according to the inter-frame gap. The histogram values can be reset
by the RAR IFG histogram (RAR is the abbreviation for Reset after read).

The third figure with screenshot (Figure 4.7.8(c))) shows the items of
PCS. This screenshot demonstrates the possibilities of item formats. In PCS
group of items there is a lot of configurable items.
to fill in the new value and change the value of the item in hardware. The

36

High BER Normal
PCS Block lock PCS block locked
BER counter 0
Errored block counter 0
Seed A (57:48) o st
Seed A (47:32) o sl
Seed A (31:16) [CE R
Seed A (15:0) ox0 [set |
Seed B (57:48) o sl
Seed B (47:32) [CE R
Seed B (31:16) o |set]
(c) PCS

Comet.cgi allows user

NETCONF plug-in

HTML form with an input text accepts a number in decimal or hexadecimal.
Clicking on the hypertext link on the label causes the inversion of the current
value. In addition, this screenshot shows the result of usage of the ENUM
format. I specified the text and icon for some items such as PCS Block
lock and PRBS31 test capability. We can find the examples of SWITCH and
INDICATE values of format — PCS reset and PCS Fault(s).

When the HTML form is submitted comet.cgi generates automatic redi-
rection'®. It is done by sending special HTTP header from server. The header
is called “Location”. The redirection is handled by the html module before
rendering an HTML page. The inversion of value by clicking on the item link
causes the same reaction occurs.

In order to determine the redirect URL, an environment variable is used.
It is the HTTP__REFERER variable that contains the URL of previous
location. This variable is set by web server.

4.5 NETCONF plug-in

COMET supports the NETCONF protocol by implementing a plug-in for
Netopeer configuration system. The Netopeer plug-in is a dynamically load-
able file that implements given interface from dev_modules interface.h. This
header file contains an API for netopeer-server. The source codes of NET-
CONF plug-in can be found in the /comet/sw/netcomet directory on enclosed
CD. The main file is netopeer-cfgcomet.c.

The Netopeer system expects a plug-in to have three functions imple-
mented. The first two of these functions are for initialization and finalization
(init__plugin() and close__plugin()). The third function is the most important.
Its name is execute operation() and it is internally called at every request
the server accepts. There is a chain of comparisons in this function to de-
termine the NETCONF request operation. The basic operations are defined
in [17, RFC6241]. The device model can define its own operations as new RPC
methods. I have added send-traffic and reset-counters into the COMET
configuration model. The COMET configuration model is placed into Ap-
pendix

When it is known, what operation is being executed, the specific “execute”
function is internally called. This mechanism creates the structure of the plug-
in source codes. The structure of the netopeer-cfgcomet.c file is quite the same
as in Netopeer example plugin. The COMET plug-in, as Netopeer plug-in
does, uses the libnetconf library. Libnetconf implements the functionality of
the NETCONF protocol. The manipulation with datastores is also performed
in the library.

S HTML form is sent by an HTTP POST method; without the redirection, browser would
resent the value during every refresh of the page; in addition, the redirection is the valid
reaction on the POST method.

37

4. IMPLEMENTATION

NETCONF RFC defines three datastores — running, startup and candidate.
The datastore is a conceptual place to store and access information. Datastores
have the following meaning:

running — a configuration datastore holding the complete con-
figuration currently active on the device,

startup — a configuration datastore holding the configuration
loaded by the device when it boots,

candidate — a configuration datastore that can be manipulated
without impacting the device’s current configuration and that
can be committed to the running configuration datastore.

Netopeer repository is an implementation of datastore. At the start-up
phase, the COMET plug-in checks the existence of the valid startup datastore.
If it does not exist, plug-in creates the new instance of startup datastore and
fills it with initial values. The startup datastore is then copied to the running
repository. The NETCONF method <get-config> returns the content of the
running datastore if no else is given as the source repository. That means the
libnetconf function for obtaining datastore content was used as the Netopeer
plug-in example does.

The different situation is in the <get> method handler. This method
should return the configuration including state information. The state infor-
mation has to be read from hardware, in order to be up-to-date. The imple-
mentation of the COMET plug-in works with generated templates which are
filled with the latest values.

There are two templates for COMET. I created the resptempl.py plug-
in for pyang system to generate these templates. This pyang plug-in is in
the netcomet directory on enclosed CD. The resptempl.py works as another
pyang plug-in tree.py. Tree.py was distributed with pyang. It iterates over the
configuration model tree and prints the elements as an ASCII tree. The output
of resptemp.py is an XML template for configuration or state information
model tree. I created another python script resptempl2c.py that processes the
generated XML templates:

comet_xml_state.xml
comet_xml_config.xml

The output of resptempl2c.py is the file with a definition of constant string
in the C language (const char *). For COMET, there are two files with
definition:

comet_xml__config.c with configure information template,
comet__xml__state.c with state information template.

38

NETCONF plug-in

When we have templates generated from the model, they can be used in
the COMET NETCONF plug-in. The templates are compiled with the rest
of source codes. The variables from these files are used to load an XML tree
with template. The comet_xml_config.c is used only during the initialization,
when no startup datastore exists. The comet xml_state.c template is refilled
during every <get> request. The filling of the template is based on the XML
tree traversing. It is a recursive function, which is looking for leaves of the
tree. When function gets to the leaf, it tries to get value with corresponding
name from libcomet. If the value is found, it is appended as a text child of the
leaf.

The pcap2sze(1) functionality is also supported over the NETCONF pro-
tocol. In the plug-in, there is a definition of the default path, where PCAP
files should be located. It is defined by PCAP__ FILEDIR macro and it can
be changed using configure script:

make clean
./configure --with-pcap-dir=/path/to/directory
make

The COMET model defines the XML structure of the “sender” configura-
tion. It contains a list of PCAP files. Every PCAP file has a number that is
an index of file. One index is “active”. It was chosen, that plug-in searches
for files matching the regular expression

#define PCAP_REGEXP_STR "~ [-_ a-Z0-9]*\\.pcap$" (4.3)

When creating startup datastore, the subtree of the “sender” element from
the template is completely deleted. It is more efficient and easier to cre-
ate new subtree then appending data to existing one on the right places.
The names of PCAP files are filled in relative path. It is expected to add
PCAP_FILEDIR in time of need — when the file should be opened.

Every time any NETCONF request modifies the running configuration,
plug-in updates the values in hardware. For this task, the function update_hw
was written. This function gets the current running configuration and writes
everything to hardware. It is done by iterating over the configuration tree like
during template filling.

If send-traffic request occurs, the plug-in takes one argument from the
request message. The argument specifies what mode of transmission was cho-
sen. The COMET plug-in supports these modes according to the model:

full-speed takes the user configured copies and sends the traffic with the
interval set to zero

user-speed sends traffic at the user configured speed

interval-based takes the user configured interval and the first timestamp

39

CHAPTER

Testing and Verification

All software tools were checked with the Valgrind [7] system. The homepage
of the Valgrind project gives this definition:

Valgrind is an instrumentation framework for building dynamic
analysis tools. There are Valgrind tools that can automatically
detect many memory management and threading bugs, and profile
your programs in detail. You can also use Valgrind to build new

tools.
==6451==
==6451== HEAP SUMMARY:
==6451== in use at exit: O bytes in O blocks
==6451== total heap usage: 12,787 allocs, 12,787 frees,
688,492 bytes allocated
==6451==

==6451== All heap blocks were freed -- no leaks are possible

==6451== ERROR SUMMARY: O errors from O contexts
(suppressed: 6 from 6)

--6451--

--6451-- used_suppression: 6 dl-hack3-cond-1
==6451==

==6451== ERROR SUMMARY: O errors from O contexts
(suppressed: 6 from 6)

Figure 5.1: The output of Valgrind — result of the test of comstat(1)

All errors and memory leaks discovered by Valgrind were fixed during the
development. The results of tests of the written code were without errors and

41

N =

© 0 O U W

10

12
13

5. TESTING AND VERIFICATION

memory leaks. The example of Valgrind output is in Figure Valgrind was
executed by verbose parameter (-v) and with the full check for memory leaks
(--leak-check=full). The comstat(1) application was executed to print all
items from statistical module (comstat -s 3) in Figure

5.1 Static Analysis of Code

In addition to dynamic analysis that was done by Valgrind, the COMET
source codes were checked by static code analysis method. The static code
analysis is performed without executing program. The software that was used
for static code analysis is Stanse [28].

Stanse was used to discover bugs in Linux Kernel. It can run multiple
checkers to find errors such as memory allocation errors (null pointers, memory
leaks, dangling pointers). Stanse can find errors that can be described by state
automaton.

During the analysis, I discovered “NULL pointer dereference” problem in
the source code of netcomet. The problem was caused by missing condition
after memory allocation. The problem was successfully fixed.

I wrote a BASH script for testing all parts of COMET software. The
content of the script is shown in Listing [5.1]

stansedir=stanse —1.1.2/
mkfls="packet__gen/Makefile packet_gen/sw/libcomet /<
Makefile packet_gen/sw/netcomet/Makefile"

for mkfl in $mkfls; do

curdir=$PWD

echo $mkfl

cd $(dirname $mkfl)

make clean

cd $curdir

cd $stansedir

java —jar stanse.jar —c¢ AutomatonChecker:data«
/checkers/AutomatonChecker /memory . xml —«—
makefile "$curdir/$mkfl"

cd $curdir

done

Listing 5.1: BASH script for static code analysis (Stanse)

5.2 Sender and Receiver

The pcap2sze(1) and comstat(1)/comet.cgi were deployed on the Liberouter
development server. They were used for testing of COMET firmware during

42

Sender and Receiver

the development.

In the combination with the Ethernet tester Spirent, there were three test-
ing scenarios. The testing of the sender and receiver firmware part was done in
cooperation with Be. Pavel Benacek, the author of the COMET firmware [3].

The aim of the tests of COMET software was to verify that the presented
values are equal to real values. For the receiver part, the incoming traffic is
analysed by firmware. However, we checked the values that were read from
firmware by comstat(1).

On the other direction, we tested the pcap2sze(1) program. It was used to
send testing data of various (known) sizes. We used two different targets of
transmission. On the receiver side we had the COMET device or the Spirent
Ethernet tester (AX/4000). During the test, we compared the amount of
frames that were sent and that were received.

The test of histogram values used comstat(1) and a BASH script that can
read the histogram values. The script was written by the author of COMET
firmware and it uses the Liberouter command line utilities!”. Values read
by comstat(1) were compared with the output of this script. All values were
equal therefore the algorithm of histogram reading was well implemented in
comstat(1).

5.2.1 COMET Sender — COMET Receiver

This type of test was run locally on one development server. The server was
loaded with COMET firmware and COMET software tools were installed.
This test was based on enabled hardware loopback in the phyter (PCS system
loopback G). The COMET module Blackhole was also enabled — the module
for discarding incoming packets'®.

The transmission was done by pcap2sze(1). Information about received
traffic was read by comstat(1). We checked the amount of the incoming data
— whether the received and sent packets amount are equal. It is obvious that
the COMET firmware and software did not lose or drop any packet.

In addition, we checked whether the data of the traffic were corrupted.
There is the Liberouter version of libpcap, so that we were able to execute tcp-
dump(8) on the COMBO interface and save the traffic. Then, it was possible
to compare incoming and outgoing data. Pcapedit(1) was used to compare
PCAP file content without timestamps and PCAP headers. All data were
received correctly and no packet was corrupted.

"The script is not efficient enough because it executes csbus(1) Liberouter utility for
every histogram bin. That means there is an initialization of the communication interface
for every histogram bin. It is recommended to use comstat(1) instead. (The execution time
of the script and comstat(1) were measured by time(1). The results were 0m1.488s for the
script and 0m0.073s for comstat(1).)

181f the packets were not discarded, they would stay in the incoming queue. Blackhole
frees the queue but has no influence on statistics.

43

5. TESTING AND VERIFICATION

5.2.2 COMET Sender — Spirent Receiver

This test was similar to (.2.1] The difference was on the side of the receiver.
The COMET tester was connected to the Spirent Ethernet tester. The loop-
back from the test in Section £.2.7] was disabled.

The amount of incoming packets and the packet sizes were compared. All
incoming packets were received and counted. The average packet size was
computed correctly.

i i T

Figure 5.2: Spirent AX/4000 control software — screenshot for illustration

5.2.3 COMET Receiver — Spirent Sender

The Spirent tester can generate network traffic with various characteristics.
We used this tester to check the behaviour of COMET, when the traffic con-
tains a lot of small packets or the large packets.

We run short tests and long tests. The short test was based on fixed
amount of packets — 100000. The sizes of packets were: 64, 65, 127, 128, 512,
513, 768, 1023, 1024, 1280 and 1518 bytes. The long test was based on sending
traffic at full speed for an hour.

Packets of all sizes, that were sent, were received correctly. The distribu-
tion of packet sizes that was seen in histogram corresponded to the distribution
that was set in the Spirent tester.

5.2.4 Test of Packet Delay Histogram

This section is focused on one of the tests of the Packet delay histogram unit.
During the tests, the system loopback was enabled.

I used the pcap2sze(1) utility to send the traffic with given intervals in
relative mode. That means the first packet was sent immediately. Every

44

NETCONF Plug-in

packet was repeated so that the transmission took two minutes. Table
shows the amount of packets that were sent. The first column contains the
delay that was set. The second and the third column contain the amount of
packets.

Table 5.1: Amounts of sent and received packets depending on the interval.
The transmission was done by pcap2sze(1). Data for this table were taken
from [8].

Interval Sent packets | Received packets
2.5 ms 48010 48010
400 ps 300010 300010
80 us 1500010 1500010
10 ps 12000010 12000010
2 us 60000010 60000010
| Total amount | 73848050 73848050

Traffic was sent by these commands:

./pcap2sze -f ~/test.pcap -v -t0s2500000 -i 0 -r4800 -F1
./pcap2sze -f ~/test.pcap -v -t0s400000 -i O -r30000 -F1
./pcap2sze -f ~/test.pcap -v -t0s80000 -i O -r150000 -F1
./pcap2sze -f ~/test.pcap -v -t0s10000 -i O -r1200000 -F1
./pcap2sze -f ~/test.pcap -v -t0s2000 -i 0 -r6000000 -F1

The test.pcap file contains ten frames with average size of approximately 100 B.
The result of the test is shown in Figure [5.3] In the relative mode, the delay
of packets is measured between ends of the two following packets. That is why
the figure contains some frames in the bin with range 0-1us. The description
can be found in more detail in [§8]. No packets were lost, the delays were
correct.

5.3 NETCONF Plug-in

In order to test the Netopeer plug-in, there is an application called plugin-
tester. The application expects the name of one or more plug-ins and input
XML files as parameters. The input XML files contain NETCONF requests.

The plugin-tester was used for testing COMET plug-in. It was more com-
fortable than repeatedly connecting to Netopeer server via netopeer-client.
Netopeer-client connects to server using SSH protocol. Plugin-tester is much
faster because it does not need to establish an SSH connection.

With plugin-tester, the expected response can be compared with the output
of plug-in. I have prepared a set of testing requests. The files with requests
are placed on enclosed CD. These are meanings of sample requests:

45

5. TESTING AND VERIFICATION

0-1us
lus- 1.2us
1.2us - 1.5us
1.5us - 1.9us
1.9us - 3.8us
3.8us - 7.8us
7.8us - 15us

15us - 31.2us
31.2us - 62us
62us - 125us
125us - 250us
250us - 500us
500us - 1ms
1ms - 2ms
2ms - 3ms
3ms - others

Histogram of delays

=
0
0
0

I :oo00000
0

I 2000008
0

0
I L 500009
0

I :oo008

4]
0

I co00

0

Figure 5.3: The result of the test of Packet delay histogram

1. test.xml — the basic test of Netopeer,

2. get.xml — <get> request; returns merged state and configuration in-

formation,

3. get-config.xml — <get-config> returns configuration information,

4. get-config-filter.xml — test of <get-config> with filter set on sender,

5. edit-config.xml — change of some values,

6. edit-config-replace.xml — the same behaviour as edit-config.xml,
7. setup-sender.xml — sets the configuration of sender,

8. send.xml — RPC method that begins a transmission according to con-

figuration,

9. reset.xml — RPC method, that resets counters.

Functionality of the plug-in was verified using these sample requests. I have
created a simple BASH script for testing automatically. The script reads the
files with the name ending by tst. These files contain the list of the sample
requests that are used for the test. The script executes plugin-tester with the
parameters and the output of the program is saved into the out directory.

I have checked the output according to the configuration data model.
When the response of the plug-in was correct, I moved the output file into

46

NETCONF Plug-in

the exp directory. When the test is run again, the output is compared with
expected output. Therefore, the tests can be easily repeated after changes of
the plug-in source codes and the functionality can be checked.

47

Conclusion

My task was to design and implement a control software for the new Ethernet
tester called COMET. This system is based on COMBO card “Programmable
hardware”. This text concluded the process of development and described the
inner organization of the resulting software utilities pcap2sze(1), comstat(1)
and pcapedit(1).

During the work on this project, I have created the libcomet library that
contains the most of the functionality of the software tools. This approach
allowed me to study the process of shared libraries development.

When the libcomet library was implemented, I have studied a creation
of RPM packages. The results of my work on the libcomet library are the
libcomet-0.9.0-1.286__64.rpm package and a development version of the pack-
age.

In order to describe the location of registers, I have designed the configu-
ration file format based on the XML technology.

I have dealt with the configuration and management protocols, especially
about the NETCONF protocol. I understood the reason of creation of the
NETCONF protocol the way how this protocol works. I have studied the
YANG modeling language and then I was able to modify the COMET config-
uration data model.

In collaboration with the author of firmware, we were able to create func-
tional Ethernet tester. I have integrated the new system into the Netopeer
configuration system by the dynamically loadable file netopeer-cfgcomet.so.

According to test results, the COMET tester can be deployed and used at
the speed of 10 Gbps. During this year it is planned to migrate the COMET
system to 40/100 Gbps. The software part that I worked on, is ready for the
migration — it will work without any changes.

Future Work on COMET

All tasks have been fulfilled and the COMET software is complete and work-
ing. However, there are some opportunities to improve the current implemen-
tation. They are planned as a possible continuation of this project.

At first there is a need to implement the support of I2C. It will be done

49

CONCLUSION

by extending the addresses.xml file format (that means a modification of con-
figuration parser) and inserting some code into two functions of libcomet —
read__values() and write__config().

For a future work, it is planned to improve the web user interface. The
current comet.cgi CGI application will not generate the target HTML code.
Instead of HTML, the output will be in an XML or a JSON format. The
presentation tier will be made by currently used technologies for the web pages
development. The values will be updated on the web page using JavaScript
— AJAX technology. This will lead to more flexible user interface and more
possibilities to redesign the web pages.

The potential work is also on the pcap2sze(1) utility. This application
expects the number of copies of one frame for using the full speed mode.
Users usually need to generate network traffic for the specific time. It would
be useful for users to specify how long should the transmission take and let
the application to determine all the other parameters.

50

[10]

Bibliography

An extensible YANG validator and converter in python. 2012. Available
at WWW: <http://code.google.com/p/pyang/>

Common Object Request Broker Architecture - Wikipedia, the free ency-
clopedia. 2012. Available at WWW: <http://en.wikipedia.org/wiki/
CORBA>

FlowMon - Comprehensive Solution for NetFlow Monitoring - INVEA-
TECH. 2012. Available at WWW: <http://www.invea-tech.com/
products-and-services/flowmon>

Management information base - Wikipedia, the free encyclopedia. 2012.
Available at WWW: <http://en.wikipedia.org/wiki/Management_
information base}P>

Netconf Central. 2012. Available at WWW: <http://netconfcentral.
org>

Structure of Management Information - Wikipedia, the free encyclo-
pedia. 2012. Available at WWW: <http://en.wikipedia.org/wiki/
Structure_of_Management_Information>

Valgrind Home. 2012. Available at WWW: <http://valgrind.org/>

BENACEK, Pavel: Ethernet tester for high-speed networks. Master’s the-
sis, Faculty of Information Technology, Czech Technical University, 2012,
written in Czech.

Bjorklund, M.: YANG - A Data Modeling Language for the Network
Configuration Protocol (NETCONF). RFC 6020 (Proposed Standard),
Oct. 2010. Available at WWW: <http://www.ietf.org/rfc/rfc6020.
txt>

Case, J.; Mundy, R.; Partain, D.; etc.: Introduction to Version 3 of
the Internet-standard Network Management Framework. RFC 2570 (In-
formational), Apr. 1999, obsoleted by RFC 3410. Available at WWW:
<http://www.ietf.org/rfc/rfc2570.txt>

51

http://code.google.com/p/pyang/
http://en.wikipedia.org/wiki/CORBA
http://en.wikipedia.org/wiki/CORBA
http://www.invea-tech.com/products-and-services/flowmon
http://www.invea-tech.com/products-and-services/flowmon
http://en.wikipedia.org/wiki/Management_information_base
http://en.wikipedia.org/wiki/Management_information_base
http://netconfcentral.org
http://netconfcentral.org
http://en.wikipedia.org/wiki/Structure_of_Management_Information
http://en.wikipedia.org/wiki/Structure_of_Management_Information
http://valgrind.org/
http://www.ietf.org/rfc/rfc6020.txt
http://www.ietf.org/rfc/rfc6020.txt
http://www.ietf.org/rfc/rfc2570.txt

BIBLIOGRAPHY

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

52

CESNET, z.s.p.o: CESNET, z.s.p.o. 1996-2012. Available at WWW:
<http://www.cesnet.cz>

CESNET, z.s.p.o: COMBOG6 | www.liberouter.org. 2002-2009. Available
at WWW: <http://www.liberouter.org/card_combolxt.php>

CESNET, z.s.p.o: NetCOPE | www.liberouter.org. 2002-2009. Available
at WWW: <http://www.liberouter.org/netcope/>

CESNET, z.s.p.o: Programmable hardware | www.liberouter.org. 2002-
2009. Available at WWW: <http://www.liberouter.org>

Dimitri van Heesch: Doxygen. 2012. Available at WWW: <http://www.
stack.nl/~dimitri/doxygen/>

Enns, R.: NETCONF Configuration Protocol. RFC 4741 (Proposed
Standard), Dec. 2006, obsoleted by RFC 6241. Available at WWW:
<http://www.ietf.org/rfc/rfc4741.txt>

Enns, R.; Bjorklund, M.; Schoenwaelder, J.; etc.: Network Configura-
tion Protocol (NETCONF). RFC 6241 (Proposed Standard), June 2011.
Available at WWW: <http://www.ietf.org/rfc/rfc6241.txt>

Free Software Foundation, Inc: Autoconf - GNU Project - Free Soft-
ware Foundation (FSF). Available at WWW: <http://www.gnu.org/
software/autoconf/>

Free Software Foundation, Inc: Automake - GNU Project - Free Soft-
ware Foundation (FSF). Available at WWW: <http://www.gnu.org/
software/automake/>

Free Software Foundation, Inc: Make - GNU Project - Free Soft-
ware Foundation (FSF). Available at WWW: <http://www.gnu.org/
software/make/>

HEDSTROM, Brian; Akshay Watwe; Siddharth Sakthidharan: Protocol
Efficiencies of NETCONF versus SNMP for Configuration Management
Functions. Master’s thesis, University of Colorado, 2011.

KREJCI, R.: Konfigurace sitovych zaif{zen{ protokolem NETCONF [on-
line]. 2007. Available at WWW: <http://theses.cz/id/a7q8qk/>

KREJCI, Radek: libnetconf - NETCONTF library in C. 2012. Available at
WWW: <http://code.google.com/p/libnetconf/>

KREJCI, Radek: Remote configuration system using NETCONF
protocol. 2012. Available at WWW: <http://code.google.com/p/
netopeer/>

http://www.cesnet.cz
http://www.liberouter.org/card_combolxt.php
http://www.liberouter.org/netcope/
http://www.liberouter.org
http://www.stack.nl/~dimitri/doxygen/
http://www.stack.nl/~dimitri/doxygen/
http://www.ietf.org/rfc/rfc4741.txt
http://www.ietf.org/rfc/rfc6241.txt
http://www.gnu.org/software/autoconf/
http://www.gnu.org/software/autoconf/
http://www.gnu.org/software/automake/
http://www.gnu.org/software/automake/
http://www.gnu.org/software/make/
http://www.gnu.org/software/make/
http://theses.cz/id/a7q8qk/
http://code.google.com/p/libnetconf/
http://code.google.com/p/netopeer/
http://code.google.com/p/netopeer/

[25]

LHOTKA, Ladislav: Configuring Network Devices with NETCONF and
YANG. 2011. Available at WWW: <http://www.xmlprague.cz/2011/
presentations/ladislav-lhotka-netconf-yang.pdf>

MICHALIK, M.: Testovanie paketového filtru NIFIC v prostredi resl-
nej siete Bakalarska prace, Masarykova univerzita, Fakulta informatiky.
2011. Available at WWW: <http://theses.cz/id/£203ib/>

Schoenwaelder, J.: Overview of the 2002 IAB Network Management
Workshop. RFC 3535 (Informational), May 2003. Available at WWW:
<http://www.ietf.org/rfc/rfc3535.txt>

SLABY, Jii{: Stanse - Static Analysis Framework for C code. 2009. Avail-
able at WWW: <http://stanse.fi.muni.cz/>

Spirent Communications: Spirent - A leader in test, measurement and
service assurance solutions. 2012. Available at WWW: <http://www.
spirent.com/>

The Apache Software Foundation: The Apache HTTP Server Project.
2012. Available at WWW: <http://httpd.apache.org/>

53

http://www.xmlprague.cz/2011/presentations/ladislav-lhotka-netconf-yang.pdf
http://www.xmlprague.cz/2011/presentations/ladislav-lhotka-netconf-yang.pdf
http://theses.cz/id/f203ib/
http://www.ietf.org/rfc/rfc3535.txt
http://stanse.fi.muni.cz/
http://www.spirent.com/
http://www.spirent.com/
http://httpd.apache.org/

APPENDIX A

Acronyms

GUI Graphical user interface

CLI Command line interface

XML Extensible markup language

PCAP Packet Capture - file format for storage of network traffic
FPGA Field-programmable gate array

COMET COMbo Ethernet Tester

CORBA Common Object Request Broker

IDL Interface definition language

LSB Least significant bit

MSB Most significant bit

MIB Management Information Base

SMI Structure of Management Information

SFP Small Form-factor Pluggable transceiver

XFP 10 Gigabit Small Form-factor Pluggable transceiver

ISO/OSI International Organization for Standardization / Open Systems
Interconnection

RPC Remote Procedure Call

55

o Ot

© 00

10
11
12

13
14

APPENDIX

Installation Manual

This installation manual was written and tested on the Scientific Linux distri-
bution, used on Liberouter team’s servers. The similar installation procedure
could be done on other RPM based distributions such as Red Hat or Fedora
with YUM package manager.

Before installation, the CESNET repository should be added into the YUM
configuration. Create new file /etc/yum.repos.d/liberouter.repo

[Liberouter—stable |

name=Liberouter — Tools for Monitoring and «
Configuration

baseurl=http://homeproj.cesnet.cz/rpm/liberouter /<
stable/$basearch

enabled=1

gpgcheck=1

gpgkey=http://homeproj.cesnet.cz/rpm/liberouter /RPM——
GPG-KEY-liberouter

[Liberouter—devel |

name=Liberouter — Tools for Monitoring and «
Configuration

baseurl=http://homeproj.cesnet.cz/rpm/liberouter /devel—
/$basearch

enabled=1

gpgcheck=1

gpgkey=http://homeproj.cesnet.cz/rpm/liberouter /RPM——
GPG-KEY-liberouter

Listing B.1: Liberouter repository configuration

o7

B. INSTALLATION MANUAL

B.1 Dependencies

The COMET project depends on some Liberouter packages, libzml2 and
libxml2-devel packages. This is the list of Liberouter packages:

o libcommlbr

e libsze2

e libcombo

e libcombo-devel
o libsze2-devel

o libcommlbr-devel

e libpcap-devel

B.2 Libcomet

Installation from repository (for x86_ 64 architecture) is done by:

yum install libcomet

In case it is needed to compile libcomet from source codes, copy the files
from the CD directory and type:

./configure
make
make install

For RPM package creation, run

make rpm

instead of “make install”.

B.3 COMET

After the successful installation of libcomet and dependencies, all tools from
the COMET project can be compiled.

The project uses Autotools, so the compilation is done by executing in the
root directory:

./configure
make
make install

58

COMET Start-up

B.4 COMET Start-up

After successful installation, COMET must be started. To start and initialize
the COMET tester, use the comet-boot.sh script. Comet-boot.sh is located in
/fw directory on the CD.

B.5 Netcomet

Netcomet depends on the latest version of libnetconf and libcomet. It is rec-
ommended to install the compiled version of libnetconf from the Netopeer
repository.

Netcomet (the COMET Netopeer plug-in) has a separate configure script.
The compilation is done using make(1).

When we have the plug-in compiled, the BASH script install.sh in the
/comet/sw/netcomet/config directory should prepare everything that is needed.

59

APPENDIX C

Netopeer Architecture Scheme

61

C. NETOPEER ARCHITECTURE SCHEME

libnetconf

(for clients)

ssh

SSH server
(sshd)

SH Subsystem
NETCONF‘ NETCONF ‘ NETCONF ‘

w

agent 1 agent 3 agent 2
(D-Bus
N w
libnetconf S
(for servers) NETCONF server ©
(system daemon) \g
°
NACM S
o | Device 1 o | Device 2 o | Device 3
2| config 2| config 2| config
3| module 3| module A | module
libnetconf libnetconf libnetconf
(storage handler) (storage handler) (storage handler)

Figure C.1: The scheme of the Netopeer 2 project, published on the official
project web sites [24].

62

© 00 O U i W N =

I I N e e e N e e = T
_ O © 00 O Ui W N = O

22
23
24

25
26
27
28

APPENDIX D

COMET configuration model

module comet—tester {
namespace "http://cesnet.cz/ns/yang/comet—tester";
prefix "ct";

import ietf—yang—types {
prefix "yang';
}

import ietf—inet—types {
prefix "inet";
}

/* Metadata */
organization
"CESNET, z. s. p. o0.";
contact
"cejkat@cesnet.cz";
description
"This YANG module defines the data model for the «
Combo Ethernet
Tester (COMET) .

It is able to retrieve information from the COMEIl+—
firmware ,

send stored testing network traffic and obtain

statistical information about incoming traffic.

)

63

29
30
31
32
33
34
35

36
37
38
39
40
41
42
43
44

45
46
47

48
49

50
51
52
53
54
55
56
o7
o8
59
60
61

62

D. COMET CONFIGURATION MODEL

revision 2012—05-04 {
description
"Master thesis revision.";
¥

grouping enabled—switch {
description
"This grouping defines a switch which is used «
for
enabling /disabling individual COMET modules.";
leaf enabled {
type boolean;
default "true';

}
}
grouping histogram64 {
description
"This grouping defines reusable contents for «
histograms with
64—bit counters for each bin.

Histograms are statistics , hence ’config false«

?

This grouping is supposed to be used in a «
container
representing the entire histogram. Such a <
container node
should provide, in its ’description’ «
substatement , parameters
necessary for interpreting the histogram counts<«
, 1. e. at
least minimum and maximum values and the total «
number of bins.
list bin {
key "seq—number";
config "false";
max—elements "256";
description
"Each entry in this list gives the count of «
items in a single
histogram bin identified by its sequence «
number .

64

63
64
65

66

67
68
69
70
71
72
73
74

75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

96
97
98
99
100
101
102

Maximum number of bins is 256.

Sequence numbers of the entries must be «
increasing . However,

entries for one or more bins may be missing —«—

count of that
bin is then considered to be zero.
leaf seq—mumber {
type uint8;
}
leaf count {
description
"Number of values in the corresponding <«
histogram bin.";
type uint64;
}
}
}

container comet—testers {
list comet—tester {
key "interface—id";
leaf interface—id {
type uintl6 {
range "0..max";
}

}

container statistics {

uses enabled—switch;
container data {
config "false";
leaf pkt—sum {

mandatory "true';

must ". = ../pkt—rec + ../pkt—dis";
description
"Total packet count (received + «
discarded).";

type yang:zero—based—counter64;
}
leaf pkt—rec {
mandatory "true';
description
"Counter of received frames.";
type yang:zero—based—counter64;

65

103
104
105
106
107
108
109
110
111
112
113

114
115
116
117
118
119
120
121
122
123
124
125

126
127
128
129
130
131

132
133
134
135
136
137

138
139
140
141
142

D. COMET CONFIGURATION MODEL

66

}

leaf pkt—dis {

}

mandatory "true';
description

"Counter of discarded frames.";
type yang:zero—based—counter64;

leaf pkt—bo {

}

mandatory "true';
description
"Counter of packets causing buffer

overflow.";
type yang:zero—based—counter64;

leaf pkt—crc {

}

mandatory "true';
description

"Counter of packets with CRC error.

type yang:zero—based—counter64;

leaf pkt—mac {

}

mandatory "true';
description

"Counter of packets with bad MAC address«

[
3

type yang:zero—based—counter64;

leaf pkt—bmtu {

}

mandatory "true';
description
"Counter of packets whose size is
than MIU.";
type yang:zero—based—counter64;

leaf pkt—omtu {

}

mandatory "true';
description
"Counter of packets whose size is
greater than MIU.";
type yang:zero—based—counter64;

leaf min—size {

mandatory "true';
description

less «

143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

n

"Minimum size.";
type uint32;
}
leaf max—size {
mandatory "true';
description
"Maximum size.";
type uint32;
}
leaf min—delay {
mandatory "true';
description
"XGMII minimum delay.";
type uint64;
units "bytes";
}
leaf max—delay {
mandatory "true';
description
"XGMII maximum delay.";
type uint64;
units "bytes";
}
leaf avg—bitrate {
mandatory "true';
description
"Current average bitrate.";
type uint64;
units "bps";
}
leaf avg—pkt—size {
mandatory "true';
description
"Current average packet size.";
type uint64;
units "bytes";
}
container packet—sizes {
description
"Histogram of observed packet sizes."';
uses histogram64 ;
}
container packet—gaps {
description

67

187

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

D. COMET CONFIGURATION MODEL

68

"Histogram of observed interpacket gaps.«

[
)

uses histogram64 ;

}
}
}

container sender {
uses enabled—switch;
leaf interface {
description
"Output interface.";
type uintl6;
}
leaf timestamp {
description
"Timestamp of the first packet.";
type uint64;
units "nanoseconds";
}
leaf start—delay {
description
"Delay of the first packet.";
type uint64;
units "nanoseconds";
}
leaf interval {
description
"Time interval between packets."
type uint64;
units "nanoseconds';

}

leaf copies {
description
"Number of copies of each packet.";
type uint32;
}
leaf speed {
description
"Transmission speed.";
type uint64;
units "bits/s";
}
leaf hw—timestamp {
description

230

231
232
233
234
235

236
237
238
239

240
241

242
243
244
245
246
247
248
249

250
251

252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267

"If true, get the first timestamp from <«
hardware.";
type boolean;
}
container pcap—files {
description
"List of uploaded pcap files. At any <
moment, only one of
them is active.";
leaf active {
description
"Reference to the number of the active «
pcap file.

No file is active if this leaf is «
missing .
type leafref {
path "../pcap—file /number";
}
}
list pcap—file {
description
"URL of the PCAP file with a sequence <«
number .

Numbers must always form an increasing <«
sequence .
key "number";
leaf number {
type uint8 {
range "1..max";
}

}
leaf url {

type inet:uri;
¥
}
}

container data {
config "false";
leaf status {
mandatory "true';

69

268
269

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293

294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309

D. COMET CONFIGURATION MODEL

description
"Operational status of the sender module«

[
3

type enumeration {
enum sending ;
enum waiting;

}
}
}
}

container output—packet—checker {
uses enabled—switch;
¥
container input—packet—checker {
uses enabled—switch;
container data {
config "false';
leaf inord {
mandatory "true';
description
"Counter of packets arriving in order.";
type yang:zero—based—counter64;
¥
leaf outord {
mandatory "true';
description
"Counter of packets arriving out of «
order.";
type yang:zero—based—counter64;
}
leaf lost {
mandatory "true';
description
"Counter of lost packets.";
type yang:zero—based—counter64;
}
leaf error {
mandatory "true';
description
"Counter of packets with errors.";
type yang:zero—based—counter64;
}
leaf max—delay {
mandatory "true';

70

310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353

description
"Maximum packet delay.";
type uint64;
units "nanoseconds";
}
leaf min—delay {
mandatory "true';
description
"Minimum packet delay.";
type uint64;
units "nanoseconds";
}
leaf avg—delay {
mandatory "true';
description
"Average packet delay.";
type uint64;
}
container packet—delays {
description
"Histogram of observed packet
uses histogram64 ;

¥
}
}

container blackhole {
uses enabled—switch;
}
container physical—coding—sublayer {
uses enabled—switch;
leaf sys—loopback—enabled {
description
"Enable system loopback.";
type boolean;
}
leaf net—loopback—enabled {
description
"Enable network loopback.";
type boolean;
}
leaf low—power—enabled {
description
"Enable low power.";
type boolean;

delays.";

71

354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397

D. COMET CONFIGURATION MODEL

}

leaf rx—scr—enabled {
description
"Enable RX descrambler.";
type boolean;
}
leaf tx—scr—enabled {
description
"Enable TX scrambler.";
type boolean;
}
container data {
config "false";
leaf tx—fault {
mandatory "true';
description
"TX fault indicator.";
type boolean;
¥
leaf rx—fault {
mandatory "true';
description
'"RX fault indicator.";
type boolean;
}
leaf high—ber {
mandatory "true';
description
"High BER indicator";
type boolean;
}
leaf ber—count {
mandatory "true';
description
"BER counter.";
type uint8;
}
leaf errblk—count {
mandatory "true';
description
"Counter of blocks with
type uint8;
¥
leaf block—lock {

72

errors.";

398 mandatory "true';

399 description

400 "Block lock indicator.";
401 type boolean;

402 }

403 }

404 }

405 }

406 }

407 /¥ RPCs %/

408 rpc reset —modules {

409 description

410 "Reset (switch on/off) one or more COMET modules<
411 input {

412 leaf—1list submodule {

413 description

414 "Names of the modules.";
415 type enumeration {

416 enum input—packet—checker;
417 enum output—packet—checker;
418 enum sender ;

419 }

420 }

421 }

422 }

423 rpc reset—counters {

424 description

425 "Reset all counters in one or more COMET modules«
426 input {

427 leaf—1list submodule {

428 description

429 "Names of the modules.";
430 type enumeration {

431 enum statistics;

432 enum input—packet—checker;
433 enum output—packet—checker;
434 enum physical —coding—sublayer;
435 }

436 }

437 }

438 }

439 rpc send—traffic {

73

D. COMET CONFIGURATION MODEL

440 description

441 "Send traffic from active pcap file";
442 input {

443 leaf mode {

444 description

445 "Mode of sending";
446 type enumeration {
447 enum full —speed;
448 enum user—speed;
449 enum interval;

450 }

451 }

452 }

453 }

454 |}

Listing D.1: COMET configuration data model

74

APPENDIX

Contents of Enclosed CD

Lo 111 PP COMET control software library
I o ' COMET binaries and packages
I Source code directory

comstat.......oiiiiiiiii i comstat(1) source codes
1ibComet o oot e COMET library
NELCOMET vttt et ittt et enns Netopeer plug-in

| conf ig.o.ooooaa. Netopeer plug-in configuration and installation
peapedit .. pcapedit(1)
PCAP2SZE « vt tte et e et e pcap2sze(1)

VANE ottt eeiiiiiiii e COMET configuration data model

| ImAgeS . e Sample images for comet.cgi
e o Y Documentation
hcomet—doxygen Documentation for COMET utilities
libcomet-doxygen............... Documentation for libcomet library

html ..o e HTML version

T = PDF version

112 Manual pages

L man3.. ..o Library functions man pages
PP COMET firmware

Figure E.1: Contents of Enclosed CD

75

	List of Listings
	Introduction
	COMET -- Ethernet Tester
	Project requirements

	Network Device Configuration and Management
	NETCONF
	YANG -- configuration model

	Control Tools Design
	Hardware
	Firmware
	Software

	Implementation
	PCAPEDIT
	PCAP2SZE
	COMSTAT
	User interface
	NETCONF plug-in

	Testing and Verification
	Static Analysis of Code
	Sender and Receiver
	NETCONF Plug-in

	Conclusion
	Future Work on COMET

	Bibliography
	Acronyms
	Installation Manual
	Dependencies
	Libcomet
	COMET
	COMET Start-up
	Netcomet

	Netopeer Architecture Scheme
	COMET configuration model
	Contents of Enclosed CD

